
Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2024/2025

Collision Detection and Proximity Search

Study of Quadtree Optimization and Applications for

AR and Video Games

Muhammad Ra’if Alkautsar - 135230111

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1mraifalkautsar@gmail.com, 13523011@std.stei.itb.ac.id

Abstract— Efficiently determining which objects in a virtual

scene intersect or lie within a given distance of one another is

fundamental to real-time simulations, ranging from video games to

augmented reality. Brute force approaches that compare every

pair of objects quickly become infeasible as the scene size grows. In

this work, we investigate the use of a 2D quadtree as a divide-and-

conquer method. We begin by reviewing the theory of spatial

partitioning and quadtree construction, then implement four

different methods: brute-force collision, quadtree-accelerated

collision, brute-force enighbour search, and quadtrree-accelerated

neighbour search over various input. The result confirms that

quadtree pruning reduces the per-query cost. In proximity search,

where each query region is a fixed-size square, the algorithm yields

near-logarithmic scale. In contrast, collision detection queries with

variable-sized rectangles can straddle cell boundaries and degrade

performance to linear time. Our study demonstrates that with

appropriate configuration, quadtrees offer dramatic speedups for

localized queries, making them a practical choice for real-time

interactive applications.

Keywords—Quadtree, collision, proximity, search, detection,

augmented reality, video games

I. INTRODUCTION

When simulating physics and interactions of objects in space,

computing collisions are a big part of the work. Collision

detection is a computational problem of detecting an intersection

of two or more objects in virtual space. It tries to solve the

questions of if, when, and where two or more objects intersect.

It is a classic problem in computational geometry or computer

graphics and has applications in various sections of computing,

such as physical simulation, videogames, and robotics. Most

collision detection algorithms devised can be grouped into

operating on 2D or 3D spatial objects, but there might be niche

explorations into algorithms that operate in higher dimensions.

Whether in a real-time game engine, a robotics planner, or

various other algorithms that simulate physical contact, collision

detection is at the heart of it. A fast and efficient algorithm is

necessary so that problems can be solved with minimal

computing cost.

Figure 1.1. Illustration of collision detection

(Source: https://developer.mozilla.org/en-

US/docs/Games/Techniques/3D_collision_detection)

In general, collision detection is divided into two phases—

broad phase and narrow phase. In the broad phase, data

structures like quadtrees operate on bounding rectangles (in 2D)

or boxes (in 3D). When a new object is created, it is inserted into

the tree. If an object moves, it is reinserted into the tree. During

the query process, the tree is traversed down those branches

whose region overlaps the given parameters of the query. This

hierarchical pruning capability is especially powerful in sparsely

populated or unevenly distributed scenes. In the narrow phase,

the algorithm then applies precise geometric test to confirm the

actual contact points.

Figure 1.2. AR technology on mobile

(Source: https://developer.mozilla.org/en-

US/docs/Games/Techniques/3D_collision_detection)

The application domains for collision detection are vast and

diverse. In videogames, bottlenecks in performance translate

into skipped or dropped frames. In robotics, collision detection

ensures safe planning of movements in environments. In

mailto:1mraifalkautsar@gmail.com

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2024/2025

augmented reality or simulations, collision detection allows for

realistic results. Yet, despite decades of work, each domain

presents unique trade-offs in speed, memory usage, and

implementation complexity.

Beyond simply detecting pairwise collisions, many

applications also require efficient proximity detection, finding

all objects within a given distance or “radius” of each query

point.

Proximity detection differs subtly from traditional collision

detection, but it remains similar in that it can be optimized using

the various same methods used to optimize pairwise collisions.

It broadens the question: rather than just identifying whether

objects collide, it asks whether objects are within a certain radius

or distance fom each other. In practical applications, this is

essential for simulations where each entity interacts with others

based on their relative positions, even if they do not exactly

physically collide. For example, disease propagation range or

interactions between molecules.

Figure 1.3. Simulating a flock of birds

(Source: https://mas.kke.co.jp/en/model/voide-model)

Consider simulating a flock of birds or a crowd of virtual

agents (a quite common problem in various video games), each

individual continuously monitors neighbors within a certain

radius to smoothly adjust trajectories and avoid collisions.

Similarly, for warehouse robots navigating through aisles, safe

distances need to be maintained to prevent collisions while

optimizing their paths. These systems must, in a very rapid

manner, solve queries like the collection of all objects that are

near their position efficiently, even as thousands of objects move

through space simultaneously.

The simplest way to perform proximity detection is the brute-

force approach. While straightforward, checking the distance

between every possible pair of objects becomes computationally

infeasible as the number of objects grows.

One particularly effective spatial partitioning structure is the

quadtree. A quadtree divides the simulation area into

progressively smaller quadrants, allowing objects to be grouped

by their positions. When in the process of searching for

neighbors, the quadtree helps limit the search area to relevant

regions, reducing computational cost.

In this paper, we benchmark the quadtree-based approaches

for efficient collision detection and proximity detection. We

compare their performance to the naïve brute force method.

II. THEORETICAL BASIS

A. Divide and Conquer

Figure 2.1. Steps of the divide and conquer algorithm

(Source:

https://www.enjoyalgorithms.com/blog/divide-and-

conquer)

The divide and conquer approach is a fundamental

algorithmic paradigm that solves problems by

recursively breaking them into smaller subproblems.

Each subproblem is solved independently and the

solutions are then combined to solve the original

problem. The method has three key steps:

1. Divide, which consists of breaking the

problem into smaller subproblems.

2. Conquer, which solves each subproblem

recursively until they are simple enough to solve

directly.

3. Combine, which merges individual solutions

to form a solution to the original problem.

Divide and conquer is known for its efficiency and

clarity in solving complex computational problems.

Examples of algorithms that utilize this paradigm

include quicksort, mergesort, binary search, and spatial

indexing methods such as quadtrees and other various

trees.

B. Collision and Proximity Detection

Figure 2.2. Colliding objects

(Source:

https://stackoverflow.com/questions/46268139/2d-

collision-detection-without-axis-alignment)

Collision detection is the computational problem of

determining whether two or more objects intersect or

collide in virtual space. It is a critical component of

interactive simulations such as videogames, robotics

path planning, virtual reality, and computer-aided

design systems. Generally, collision detection is

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2024/2025

approached in two phases:

1. Broad-phase Detection: Quickly identifies

potential collision pairs by eliminating pairs that

are clearly far apart. This stage prioritizes speed

over accuracy.

2. Narrow-phase Detection: Performs precise

geometric calculations on the narrowed set of

candidate pairs identified during the broad phase

to accurately detect collisions.

Figure 2.3. Broad phase and narrow phase of

proximity detection

(Source:

https://www.researchgate.net/figure/Collision-

detection-broad-phase-and-narrow-phase-process-

workload-in-XDEM-The_fig2_363128648)

Proximity detection, also called neighbor detection,

is closely related but distinct from collision detection.

It seeks to identify objects within a specific distance or

radius from a query point, regardless of whether they

physically intersect. This task is crucial in systems such

as flocking simulations, crowd simulations, and

particle systems where agents or objects interact based

on spatial closeness rather than actual collision.

C. Algorithmic Complexity

Algorithmic complexity describes the

computational resources required by an algorithm,

typically in terms of time or space. Complexity is

expressed using Big-O notation. Some example of

complexity classes: O(n²), O(n log n), and O(log n).

D. Spatial Partitioning Methods

Spatial partitioning methods organize data into

structured formats to efficiently perform queries, such

as collision checks or proximity searches. The goal of

spatial partitioning os to reduce the number of object

comparisons by limiting search to relevant region of

space. Common spatial partitioning methods:

- Uniform grid: space divided into equal-sized cells

- Binary space partitioning: recursively divide space

with hyperplanes into two partitions

- Octrees (3D) / Quadtrees (2D): recursively

subdivide space into eight (octree) or four

(quadtree) sub-regions.

- k-d Trees: binary space-partitioning structures

dividing space recursively along alternating axes.

E. Quadtree

Figure 2.4. Illustration of a quadtree

(Source: https://opendsa-

server.cs.vt.edu/ODSA/Books/Everything/html/PRqu

adtree.html)

Quadtree is a hierarchical data structure that

recursively subdivides a two-dimensional spatial

region into four quadrants. Each node of the quadtree

represents a rectangular region of space, which may be

subvided further. The quadtree structure consists of:

a. Root node: entire region covered by the

quadtree.

b. Internal node: nodes subdivided further into

four child nodes.

c. Leaf nodes: nodes not subdivided, storing

object references directly.

The basic operations of a quadtree are:

- Insertion: When inserting an object, the quadtree

recursively places it into the smallest possible

node whose boundaries fully contain the object. If

a node exceeds a certain object count threshold

(the bucket size), it subdivides itself into four child

quadrants to better distribute objects.

- Query (Retrieval): Given a search region or point,

the quadtree efficiently retrieves all candidate

objects within nodes that intersect or contain the

query region. The search process efficiently

traverses only relevant branches, significantly

reducing the total number of object comparisons

needed.

III. COMMON PROBLEMS IN AR AND GAMES

A. Object Placement

Figure 3.1. Object placement in The Sims 4

(Source: https://screenrant.com/sims-4-move-objects-

up-guide/)

In augmented reality, virtual objects must appear to

be firmly anchored in real environment. Detecting

collisions between a new virtual object and existing

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2024/2025

real-world surfaces often fails when the plane detection

or depth sensing is incomplete. For example, in an AR

furniture placement simulation, a couch that is placed

“through” or overlapping a real-world table breaks

immersion. A robust collision detection is required to

prevent such from happening.

In another case, program designers often provide

“snap” functionality, where virtual items automatically

align with detected planes. However, proximity

searches that simply find the nearest plan can snap

objects to unintended surfaces if the detected normals

are ambiguous or incorrect. To distinguish horizontal

from vertical planes and impose context-aware

constraints, the program demands combining

proximity radius checks with orientation priors and

heuristics.

B. Physics Simulation

Figure 3.2. Simulation involving many physical

objects

(Source: https://medevel.com/os-physics-engine/)

Physics simulation in virtual environments—

whether for games, engineering, or scientific

modeling—relies heavily on collision detection and

proximity search to enforce realistic object

interactions.

As object counts grow (hundreds to thousands), the

efficiency of the broad‐phase spatial index becomes the

dominant factor in overall simulation performance.

C. Crowd Simulation

Figure 3.3. Simulation of a crowd that involves many

individual moving objects

(Source:

https://www.youtube.com/watch?v=9SVC7XBhBpk)

Crowd simulation models the movement and

interactions of large numbers of autonomous agents,

each reacting to neighbors and the environment.

Crowds frequently cluster, disperse, or flow along

corridors, causing hot spots in the spatial index.

Uniform grids can suffer from overloaded cells; trees

can become unbalanced if too many agents occupy a

node. Variants of spatial partitioning such as quadtrees

where the size can dynamically change help with such

problems.

Real-time safety-critical applications—airport

terminal simulations, traffic flow analysis, or VR

crowd experience may involve tens of thousands of

agents. GPU‐accelerated neighbor search (e.g., via

compute shaders on uniform grids) or multi‐threaded

tree traversal can be necessary to achieve interactive

rates. The overhead of data transfers, synchronization,

and index rebuilds must be balanced against raw query

speed.

IV. COLLISION DETECTION

A. Query Rectangle

Let the test rectangle be

𝑇 = [𝑡𝑥, 𝑡𝑦 , 𝑡𝑤, 𝑡ℎ] (1)

where (𝑡𝑥, 𝑡𝑦) and (𝑡𝑤, 𝑡ℎ) its width/height.

We define the query rectangle as

𝑄 = [𝑡𝑥, 𝑡𝑥 + 𝑡𝑤] × [𝑡𝑦 , 𝑡𝑦 + 𝑡ℎ] (2)

Any stored rectangle colliding with T must intersect Q.

B. Quadtree Retrieval

Start at the root node 𝑣. If the node’s bounding box 𝐵(𝑣) does

not overlap 𝑄, skip that entire subtree because no collisions are

possible there.

Otherwise, collect all rectangles stored in 𝑣, then recurse only

to child nodes 𝑐 whose boxes satisfy

𝐵(𝑐) ∩ 𝑄 ≠ ∅ (3)

By doing this, empty regions get quickly pruned.

Let Sq be the multiset of all rectangles gathered in this way. It

guarantees

{𝑅𝑖 ∶ 𝑅𝑖 ∩ 𝑇 ≠ ∅} ⊆ 𝑆𝑞 (4)

In other words, every true collision candidate lies in Sq.

C. Exact AABB Overlap Test

For each candidate rectangle 𝑅 = [𝑥, 𝑦, 𝑤, ℎ] ∈ 𝑆𝑞, perform

the axis-aligned bounding-box test:

¬(𝑥 > 𝑡𝑥 + 𝑡𝑤 ∨ 𝑥 + 𝑤 < 𝑡𝑥 ∨ 𝑦

> 𝑡𝑦 + 𝑡ℎ ∨ 𝑦 + ℎ < 𝑡𝑦) (5)

If this holds, R truly overlaps T. (i.e. collision)

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2024/2025

D. Complexity Analysis

Let N be the total number of stored rectangles and ℎ ≈ 𝑙𝑜𝑔 𝑁

the quadtree height. After retrieval, we have |𝑆𝑞| = 𝑘

candidates.

For the retrieval cost, we visit 𝑂(ℎ) nodes (pruning subtrees

whose boxes miss Q) and collect their objects. For the filter

cost, we perform 𝑘 simple AABB tests. In total

𝑂(ℎ + 𝑘) = 𝑂(log 𝑁 + 𝑘) (6)

which for modest 𝑘 is far faster than the O(N) brute-force

alternative.

V. PROXIMITY SEARCH

A. Query Square

Mathematically, the problem of proximity search can be

defined as to be described. Given a set of points

𝑃 = { 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁 (7)

within the plane and a query point

𝑞 = (𝑞𝑥 , 𝑞𝑦) (8)

we want to find all points within a radius R, as follows:

𝑁(𝑞, 𝑅) = {𝑝𝑖 ∈ 𝑃 ∶ |(𝑝𝑖 − 𝑞)| ≤ 𝑅} (9)

Computationally, we form the axis-aligned bounding square

around the query circle.

𝑄 = [𝑞𝑥 − 𝑅, 𝑞𝑥 + 𝑅] × [𝑞𝑦 − 𝑅, 𝑞𝑦 + 𝑅] (10)

Which forms:

𝑁(𝑞, 𝑅) ⊆ { 𝑝𝑖 ∶ 𝑝𝑖 ∈ 𝑄} (11)

B. Quadtree Retrieval

Starting at the root node v, we do:

• If the node’s bounding box B(v) does not overlap Q,

stop (no points in this subtree can lie in Q).

• Otherwise, add this node’s stored points to our

candidate list, then recurse only into those child

quadrants whose boxes intersect Q.

Mathematically, if v has children c, we visit just those c with

𝐵(𝑐) ∩ 𝑄 ≠ ∅

After this step, we have a candidate set

𝑆𝑄 = { 𝑝 ∈ 𝑃 ∶ 𝑝 was collected from any visited node} (12)

Which satisfies

𝑃 ∩ 𝑄 ⊆ 𝑆𝑄 (13)

C. Pruning False-Positives

We then prune out false positives by checking each candidate

against the true circle.

(𝑝𝑥 − 𝑞𝑥)2 + (𝑝𝑦 − 𝑞𝑦)
2

 ≤ 𝑅2

Points that pass this are exactly the true neighbours within

radius R.

D. Complexity Analysis

Let the tree height be

ℎ ≈ log 𝑁

and let

𝑘 = | 𝑆𝑞 |

be the number of candidates returned. Then, the quadtree

retrieval touches O(h) nodes (pruning entire subtrees when

possible) and inspects k points in the last stage. So, the total

work required is roughly

𝑂(ℎ + 𝑘) = 𝑂(𝑙𝑜𝑔 𝑁 + 𝑘)

which for moderate k is far less than the O(N) of checking

every point.

VI. IMPLEMENTATION

Figure 6.1. Quadtree class

Generally, the base quadtree implementation for collision

detection and proximity search is the same, with the main

difference at getting the index of a point or a rectangle. quadtree

class is created with bounds, level, maximum objects, and

maximum levels as its parameter.

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2024/2025

Regarding the insertion of a new object to the quadtree, when

there are no child nodes, everything is stored in self.objects.

Once len(self.objects) exceeds max_objects (the variable

initialized in the constructor) and the depth allows, it calls split()

to create four children.

After splitting, it re-evaluates each stored object: if it now

fits wholly in one child (via get_index), move it down. Else (it

straddle multiple children), it remain in the parent’s self.objects.

This ensures that each leaf holds only a small number of objects

that can’t fit neatly into its descendants.

In the retrieve() function, range_rect is either a test-collider’s

bounding box or the search-radius square. If

get_index(range_rect) returns a child index (i.e. the query fits

entirely in one quadrant), recurse into that child. Always add

self.objects, because they include any items that straddle

boundaries and might collide or lie within the search area.

A. Collision Detection

Figure 6.2. Get index function of collision detection

For collision detection, the get_index() function, ‘top’ tests

whether the rectangle’s bottom edge (y + height) is no lower

than the horizontal midline, ‘bottom’ tests whether its top edge

(y) is no higher than that same midline, ‘left’ tests whether

rectangle’s right edge (x + width) is entirely to the left of the

vertical midline, and ‘right’ tests whether its left edge (x) is

entirely to the right of that midline.

In short, the function returns a quadrant index only if the

entire rectangle fits fully inside that child. Otherwise, it returns

-1, so that overlapping or straddling rectangles stay in the parent

Figure 6.3. Generation of N random rectangles and

construction of the quadtree

For the purpose of this implementation, various number of

random rectangles of various size and positions are created.

Figure 6.4. Rectangle visualization

The Matplotlib library is used to visualize all the rectangles that

have been created.

Figure 6.5. The collision test for brute force and quadtree

The tests are done in two methods: brute force and quadtree-

accelerated.

In the brute force testing, for each test rectangle, it scans every

stored rectangle and uses four comparisons to detect axis-

aligned overlap. It performs O(N) comparisons, where N is the

total number of rectangles.

In the quadtree-accelerated testing, it only retrieves those

rectangles whose quadtree nodes overlap test rectangle. It then

runs the same four-comparison AABB check on that (much

smaller) candidate set. The cost per test is O(log N + k), where

k is the number of candidates returned.

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2024/2025

Figure 6.6. Collision detection test benchmark

The benchmarking process is done by building a list of REPS or

test rectangles, randomly positioned rectangles each sized

between MIN_SIZE and MAX_SIZE. Timing is done by

recording a high-resolution start time ‘t0’, calling the provided

test function fn(test) once per random rectangle, and recording

end time with t1. Result is then returned as the total elapsed time

in milliseconds.

B. Proximity Search

Figure 6.7. Get index function for proximity search

For proximity search, the left and right tests by comparing the

point’s x to mid_x. The top and bottom tests by comparing the

point’s y to mid_y. If the point sits strictly in one of the four

quadrants, it will return that index. Otherwise (if it lies exactly

on a midline), it returns -1 so that it stays in the parent.

Figure 6.8. Points generation

Generally, the implementation of the proximity search is similar

to that of collision detection. Various number of random points

of various positions are created.

Figure 6.9. Visualization of the points

Figure 6.9. Brute force and quadtree proximity search

In the brute force searching, the algorithm checks every point in

points to see if it lies within the circle of radius R. The cost per

query is O(N) distance computations, where N is the total

number of points.

Whereas in the quadtree neighbour search, the pruning step first

build the axis-aligned square and call qt.retrieve(Q, []), which

returns only the points in quadrants overlapping Q. It runs the

same circle test as brute force searching, but now only on the

much smaller candidate set. The cost per query is roughly O(log

N + k), where k is the number of candidates returned.

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2024/2025

Figure 6.10. Proximity search test benchmark

The benchmark randomly creates two thousands points of

varying positions and time how long it takes to call fn(q) for

each query, using time.perf_counter() for high-resolutionn

timing. It then converts elapsed seconds to milliseconds.

VII. TEST RESULTS AND COMPARISON

A. Collision Detection

No. N

(rectangles)

Brute Force

(ms)

Quadtree (ms)

1 500 63 17

2 1000 121 28

3 1500 202 43

4 2000 251 52

5 4000 497 103

6 8000 1010 218

7 16000 1983 551

Average 590 145

Table 7.1. Collision detection tests and comparison

Tests are done for the collision detection implementation with

various number of rectangles for input. For N > 500 rectangles,

the time elapsed for quadtree starts out lower but both increases

linearly with increasing number of rectangles.

B. Proximity Search

No. N (points) Brute Force

(ms)

Quadtree (ms)

1 500 107 6

2 1000 202 6

3 1500 327 7

4 2000 418 7

5 4000 831 8

6 8000 1719 10

7 16000 3362 11

Average 995 8

Table 7.2. Proximity search tests and comparison

In the proximity search case, time elapsed for the quadtree grows

far slower. For N > 500 rectangles, the increase of elapsed time

for the quadtree case is minimal even for exponential increase

of input. Whereas for the brute force case, time increases

linearly with the number of inputs.

C. Discussion

As expected, the time taken for the quadtree method is lower

than brute force. For proximity search, the quadtree method has

far lower time increase, even when increasing the number of

points exponentially. Whereas for the collision detection case,

the time taken using the quadtree method is still lower, but for

N > 500 when N is increased, the time taken increases linearly.

This happens because the shape and size of the query makes all

the difference.

For fixed-radius (proximity) queries, query region is always a

2R × 2R square (then a little circle test is created inside). As N

is grown, the area of the square stays the same, so on average it

touches roughly the same constant number of leaf cells and

returns a small 𝑘 independent of N.

The complexity per query is

𝑂(log 𝑁 + 𝑘) = 𝑂(log 𝑁 + 𝑐𝑜𝑛𝑠𝑡)

As N is doubled, the algorithm only pay log N extra steps, which

is why the quadtree times hover around 6-10 ms, even as N goes

from 500 to 16000.

This is different with rectangle collision queries. Each test

rectangle has a random width/height up to the maximum (10—

50 px). Its query region is exactly itself. Because the rectangles

are not tiny points, many straddle the mid-lines or are large

enough to overlap multiple child nodes. They end up stored in

parent nodes instead of deep leaves.

On retrieval, the quadtree must traverse more branches (maybe

the whole tree) and returns a much larger candidate set 𝑘. In

the worst case, 𝑘 can grow in proportion to N, so the pruned

scan becomes almost as expensive as brute-force.

The time complexity is

𝑂(log 𝑁 + 𝑘(𝑁)),

But k(N) grows with N, so the overall time gets closer to O(N).

Some of the solutions for better collision performance are

tuning the maximum objects and maximum levels in the

quadtree, using “loose” quadtrees which slightly expand child

bounds to let objects get deeper, and switching to a grid or

sweep-and-prune broad-phase.

VII. CONCLUSIONS

Collision detection and proximity search are some of the

common problems encountered on the domain of AR and

videogames. The tests done by creating a simple implementation

of solving collision detection and proximity search by brute

force and quad-tree accelerated method proves that spatial

partitioning (in this case, quadtree-based) can accelerate the

queries.

Quadtree excel when query regions are small relative to the

entire domain and when objects are well-distributed so that most

objects settle into deep leaves.

When queries or stored objects are large and cross many cell

boundaries, pruning suffers and the candidate count 𝑘 can

approach N, reducing the quadtree’s advantage.

In video games and AR/VR, proximity search queries often

involved or smal radii, which is suitable for quadtree

acceleration. But, for complex collision detection between many

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2024/2025

variable-sized bounding boxes, it may require additional

structure or hybrid methods to maintain real-time performance.

Quadtrees remain a simple and effective tool for spatial queries

and, with the right tuning, can be a choice to meet the real-time

demands of graphics or simulation.

VIII. APPENDIX

Video Link: https://youtu.be/YttwWJyYUP0

IX. ACKNOWLEDGEMENT

This paper would not have been completed without the help of

others. Therefore, the author would like to thank:

1. Allah SWT,

2. The author’s parents and family,

3. The lecturers in charge of Discrete Mathematics, and

4. The author’s friends

who have always supported the author during the making of this

paper.

REFERENCES

1. https://www.zachmakesgames.com/node/22

2. https://pvigier.github.io/2019/08/04/quadtree-

collision-detection.html

3. https://gameprogrammingpatterns.com/spatial-

partition.html

4. https://medium.com/%40ahmetturkgenc10/effici

ent-collision-detection-using-quadtrees-in-game-

development-c4e94370bda3

5. https://algorithmic-

robotics.org/papers/55_Quad_tree_Based_Collisi

on_D.pdf

6. https://informatika.stei.itb.ac.id/~rinaldi.munir/St

mik/2024-2025/07-Algoritma-Divide-and-

Conquer-(2025)-Bagian1.pdf

7. https://informatika.stei.itb.ac.id/~rinaldi.munir/St

mik/2024-2025/08-Algoritma-Divide-and-

Conquer-(2025)-Bagian2.pdf

8. https://informatika.stei.itb.ac.id/~rinaldi.munir/St

mik/2024-2025/09-Algoritma-Divide-and-

Conquer-(2025)-Bagian3.pdf

9. https://informatika.stei.itb.ac.id/~rinaldi.munir/St

mik/2024-2025/10-Algoritma-Divide-and-

Conquer-(2025)-Bagian4.pdf

10. https://informatika.stei.itb.ac.id/~rinaldi.munir/St

mik/2024-2025/11-Algoritma-Decrease-and-

Conquer-2025-Bagian1.pdf

11. https://informatika.stei.itb.ac.id/~rinaldi.munir/St

mik/2024-2025/12-Algoritma-Decrease-and-

Conquer-2025-Bagian2.pdf

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 24 Juni 2025

Muhammad Ra’if Alkautsar (13523011)

https://youtu.be/YttwWJyYUP0
https://www.zachmakesgames.com/node/22
https://pvigier.github.io/2019/08/04/quadtree-collision-detection.html
https://pvigier.github.io/2019/08/04/quadtree-collision-detection.html
https://gameprogrammingpatterns.com/spatial-partition.html
https://gameprogrammingpatterns.com/spatial-partition.html
https://medium.com/%40ahmetturkgenc10/efficient-collision-detection-using-quadtrees-in-game-development-c4e94370bda3
https://medium.com/%40ahmetturkgenc10/efficient-collision-detection-using-quadtrees-in-game-development-c4e94370bda3
https://medium.com/%40ahmetturkgenc10/efficient-collision-detection-using-quadtrees-in-game-development-c4e94370bda3
https://algorithmic-robotics.org/papers/55_Quad_tree_Based_Collision_D.pdf
https://algorithmic-robotics.org/papers/55_Quad_tree_Based_Collision_D.pdf
https://algorithmic-robotics.org/papers/55_Quad_tree_Based_Collision_D.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/07-Algoritma-Divide-and-Conquer-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/07-Algoritma-Divide-and-Conquer-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/07-Algoritma-Divide-and-Conquer-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/08-Algoritma-Divide-and-Conquer-(2025)-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/08-Algoritma-Divide-and-Conquer-(2025)-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/08-Algoritma-Divide-and-Conquer-(2025)-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/09-Algoritma-Divide-and-Conquer-(2025)-Bagian3.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/09-Algoritma-Divide-and-Conquer-(2025)-Bagian3.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/09-Algoritma-Divide-and-Conquer-(2025)-Bagian3.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/10-Algoritma-Divide-and-Conquer-(2025)-Bagian4.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/10-Algoritma-Divide-and-Conquer-(2025)-Bagian4.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/10-Algoritma-Divide-and-Conquer-(2025)-Bagian4.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/11-Algoritma-Decrease-and-Conquer-2025-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/11-Algoritma-Decrease-and-Conquer-2025-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/11-Algoritma-Decrease-and-Conquer-2025-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/12-Algoritma-Decrease-and-Conquer-2025-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/12-Algoritma-Decrease-and-Conquer-2025-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/12-Algoritma-Decrease-and-Conquer-2025-Bagian2.pdf

