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Abstract— Efficiently determining which objects in a virtual 

scene intersect or lie within a given distance of one another is 

fundamental to real-time simulations, ranging from video games to 

augmented reality. Brute force approaches that compare every 

pair of objects quickly become infeasible as the scene size grows. In 

this work, we investigate the use of a 2D quadtree as a divide-and-

conquer method. We begin by reviewing the theory of spatial 

partitioning and quadtree construction, then implement four 

different methods: brute-force collision, quadtree-accelerated 

collision, brute-force enighbour search, and quadtrree-accelerated 

neighbour search over various input. The result confirms that 

quadtree pruning reduces the per-query cost. In proximity search, 

where each query region is a fixed-size square, the algorithm yields 

near-logarithmic scale. In contrast, collision detection queries with 

variable-sized rectangles can straddle cell boundaries and degrade 

performance to linear time. Our study demonstrates that with 

appropriate configuration, quadtrees offer dramatic speedups for 

localized queries, making them a practical choice for real-time 

interactive applications. 

 

Keywords—Quadtree, collision, proximity, search, detection, 

augmented reality, video games 

 

 

I.   INTRODUCTION 

When simulating physics and interactions of objects in space, 

computing collisions are a big part of the work. Collision 

detection is a computational problem of detecting an intersection 

of two or more objects in virtual space. It tries to solve the 

questions of if, when, and where two or more objects intersect. 

It is a classic problem in computational geometry or computer 

graphics and has applications in various sections of computing, 

such as physical simulation, videogames, and robotics. Most 

collision detection algorithms devised can be grouped into 

operating on 2D or 3D spatial objects, but there might be niche 

explorations into algorithms that operate in higher dimensions. 

Whether in a real-time game engine, a robotics planner, or 

various other algorithms that simulate physical contact, collision 

detection is at the heart of it. A fast and efficient algorithm is 

necessary so that problems can be solved with minimal 

computing cost.  

 

 
Figure 1.1. Illustration of collision detection 

(Source: https://developer.mozilla.org/en-

US/docs/Games/Techniques/3D_collision_detection) 

 

In general, collision detection is divided into two phases—

broad phase and narrow phase. In the broad phase, data 

structures like quadtrees operate on bounding rectangles (in 2D) 

or boxes (in 3D). When a new object is created, it is inserted into 

the tree. If an object moves, it is reinserted into the tree. During 

the query process, the tree is traversed down those branches 

whose region overlaps the given parameters of the query. This 

hierarchical pruning capability is especially powerful in sparsely 

populated or unevenly distributed scenes. In the narrow phase, 

the algorithm then applies precise geometric test to confirm the 

actual contact points. 

 

 
Figure 1.2. AR technology on mobile 

(Source: https://developer.mozilla.org/en-

US/docs/Games/Techniques/3D_collision_detection) 

 

The application domains for collision detection are vast and 

diverse. In videogames, bottlenecks in performance translate 

into skipped or dropped frames. In robotics, collision detection 

ensures safe planning of movements in environments. In 
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augmented reality or simulations, collision detection allows for 

realistic results. Yet, despite decades of work, each domain 

presents unique trade-offs in speed, memory usage, and 

implementation complexity.  

Beyond simply detecting pairwise collisions, many 

applications also require efficient proximity detection, finding 

all objects within a given distance or “radius” of each query 

point.  

Proximity detection differs subtly from traditional collision 

detection, but it remains similar in that it can be optimized using 

the various same methods used to optimize pairwise collisions. 

It broadens the question: rather than just identifying whether 

objects collide, it asks whether objects are within a certain radius 

or distance fom each other. In practical applications, this is 

essential for simulations where each entity interacts with others 

based on their relative positions, even if they do not exactly 

physically collide. For example, disease propagation range or 

interactions between molecules. 

 

 
Figure 1.3. Simulating a flock of birds 

(Source: https://mas.kke.co.jp/en/model/voide-model) 

 

Consider simulating a flock of birds or a crowd of virtual 

agents (a quite common problem in various video games), each 

individual continuously monitors neighbors within a certain 

radius to smoothly adjust trajectories and avoid collisions. 

Similarly, for warehouse robots navigating through aisles, safe 

distances need to be maintained to prevent collisions while 

optimizing their paths. These systems must, in a very rapid 

manner, solve queries like the collection of all objects that are 

near their position efficiently, even as thousands of objects move 

through space simultaneously. 

The simplest way to perform proximity detection is the brute-

force approach. While straightforward, checking the distance 

between every possible pair of objects becomes computationally 

infeasible as the number of objects grows.  

One particularly effective spatial partitioning structure is the 

quadtree. A quadtree divides the simulation area into 

progressively smaller quadrants, allowing objects to be grouped 

by their positions. When in the process of searching for 

neighbors, the quadtree helps limit the search area to relevant 

regions, reducing computational cost.   

In this paper, we benchmark the quadtree-based approaches 

for efficient collision detection and proximity detection. We 

compare their performance to the naïve brute force method.  

 

II. THEORETICAL BASIS 

A. Divide and Conquer 

 

 
Figure 2.1. Steps of the divide and conquer algorithm 

(Source: 

https://www.enjoyalgorithms.com/blog/divide-and-

conquer) 

 

The divide and conquer approach is a fundamental 

algorithmic paradigm that solves problems by 

recursively breaking them into smaller subproblems. 

Each subproblem is solved independently and the 

solutions are then combined to solve the original 

problem. The method has three key steps: 

1. Divide, which consists of breaking the 

problem into smaller subproblems. 

2. Conquer, which solves each subproblem 

recursively until they are simple enough to solve 

directly. 

3. Combine, which merges individual solutions 

to form a solution to the original problem. 

Divide and conquer is known for its efficiency and 

clarity in solving complex computational problems. 

Examples of algorithms that utilize this paradigm 

include quicksort, mergesort, binary search, and spatial 

indexing methods such as quadtrees and other various 

trees. 

 

B. Collision and Proximity Detection 

 

 
Figure 2.2. Colliding objects 

(Source: 

https://stackoverflow.com/questions/46268139/2d-

collision-detection-without-axis-alignment) 

 

Collision detection is the computational problem of 

determining whether two or more objects intersect or 

collide in virtual space. It is a critical component of 

interactive simulations such as videogames, robotics 

path planning, virtual reality, and computer-aided 

design systems. Generally, collision detection is 
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approached in two phases: 

 

1. Broad-phase Detection: Quickly identifies 

potential collision pairs by eliminating pairs that 

are clearly far apart. This stage prioritizes speed 

over accuracy. 

2. Narrow-phase Detection: Performs precise 

geometric calculations on the narrowed set of 

candidate pairs identified during the broad phase 

to accurately detect collisions. 

 

 
Figure 2.3. Broad phase and narrow phase of 

proximity detection 

(Source: 

https://www.researchgate.net/figure/Collision-

detection-broad-phase-and-narrow-phase-process-

workload-in-XDEM-The_fig2_363128648) 

 

Proximity detection, also called neighbor detection, 

is closely related but distinct from collision detection. 

It seeks to identify objects within a specific distance or 

radius from a query point, regardless of whether they 

physically intersect. This task is crucial in systems such 

as flocking simulations, crowd simulations, and 

particle systems where agents or objects interact based 

on spatial closeness rather than actual collision. 

 

C. Algorithmic Complexity 

Algorithmic complexity describes the 

computational resources required by an algorithm, 

typically in terms of time or space. Complexity is 

expressed using Big-O notation. Some example of 

complexity classes: O(n²), O(n log n), and O(log n).  

 

D. Spatial Partitioning Methods 

Spatial partitioning methods organize data into 

structured formats to efficiently perform queries, such 

as collision checks or proximity searches. The goal of 

spatial partitioning os to reduce the number of object 

comparisons by limiting search to relevant region of 

space. Common spatial partitioning methods: 

- Uniform grid: space divided into equal-sized cells 

- Binary space partitioning: recursively divide space 

with hyperplanes into two partitions 

- Octrees (3D) / Quadtrees (2D): recursively 

subdivide space into eight (octree) or four 

(quadtree) sub-regions. 

- k-d Trees: binary space-partitioning structures 

dividing space recursively along alternating axes. 

 

E. Quadtree 

 

 
Figure 2.4. Illustration of a quadtree 

(Source: https://opendsa-

server.cs.vt.edu/ODSA/Books/Everything/html/PRqu

adtree.html) 

 

Quadtree is a hierarchical data structure that 

recursively subdivides a two-dimensional spatial 

region into four quadrants. Each node of the quadtree 

represents a rectangular region of space, which may be 

subvided further. The quadtree structure consists of: 

a. Root node: entire region covered by the 

quadtree. 

b. Internal node: nodes subdivided further into 

four child nodes. 

c. Leaf nodes: nodes not subdivided, storing 

object references directly. 

 

The basic operations of a quadtree are: 

- Insertion: When inserting an object, the quadtree 

recursively places it into the smallest possible 

node whose boundaries fully contain the object. If 

a node exceeds a certain object count threshold 

(the bucket size), it subdivides itself into four child 

quadrants to better distribute objects. 

- Query (Retrieval): Given a search region or point, 

the quadtree efficiently retrieves all candidate 

objects within nodes that intersect or contain the 

query region. The search process efficiently 

traverses only relevant branches, significantly 

reducing the total number of object comparisons 

needed. 

 

III. COMMON PROBLEMS IN AR AND GAMES 

A. Object Placement 

 

 
Figure 3.1. Object placement in The Sims 4 

(Source: https://screenrant.com/sims-4-move-objects-

up-guide/) 

 

In augmented reality, virtual objects must appear to 

be firmly anchored in real environment. Detecting 

collisions between a new virtual object and existing 
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real-world surfaces often fails when the plane detection 

or depth sensing is incomplete. For example, in an AR 

furniture placement simulation, a couch that is placed 

“through” or overlapping a real-world table breaks 

immersion. A robust collision detection is required to 

prevent such from happening. 

In another case, program designers often provide 

“snap” functionality, where virtual items automatically 

align with detected planes. However, proximity 

searches that simply find the nearest plan can snap 

objects to unintended surfaces if the detected normals 

are ambiguous or incorrect. To distinguish horizontal 

from vertical planes and impose context-aware 

constraints, the program demands combining 

proximity radius checks with orientation priors and 

heuristics. 

 

B. Physics Simulation 

 

 
Figure 3.2. Simulation involving many physical 

objects 

(Source: https://medevel.com/os-physics-engine/) 

 

Physics simulation in virtual environments—

whether for games, engineering, or scientific 

modeling—relies heavily on collision detection and 

proximity search to enforce realistic object 

interactions. 

As object counts grow (hundreds to thousands), the 

efficiency of the broad‐phase spatial index becomes the 

dominant factor in overall simulation performance. 

 

C. Crowd Simulation 

 

 
Figure 3.3. Simulation of a crowd that involves many 

individual moving objects 

(Source: 

https://www.youtube.com/watch?v=9SVC7XBhBpk) 

 

Crowd simulation models the movement and 

interactions of large numbers of autonomous agents, 

each reacting to neighbors and the environment. 

Crowds frequently cluster, disperse, or flow along 

corridors, causing hot spots in the spatial index. 

Uniform grids can suffer from overloaded cells; trees 

can become unbalanced if too many agents occupy a 

node. Variants of spatial partitioning such as quadtrees 

where the size can dynamically change help with such 

problems.   

Real-time safety-critical applications—airport 

terminal simulations, traffic flow analysis, or VR 

crowd experience may involve tens of thousands of 

agents. GPU‐accelerated neighbor search (e.g., via 

compute shaders on uniform grids) or multi‐threaded 

tree traversal can be necessary to achieve interactive 

rates. The overhead of data transfers, synchronization, 

and index rebuilds must be balanced against raw query 

speed. 

 

IV. COLLISION DETECTION 

A. Query Rectangle 

 

Let the test rectangle be 

  

𝑇 = [𝑡𝑥, 𝑡𝑦 , 𝑡𝑤, 𝑡ℎ] (1) 

 

where  (𝑡𝑥, 𝑡𝑦) and (𝑡𝑤, 𝑡ℎ) its width/height. 

 
We define the query rectangle as  
 

𝑄 = [𝑡𝑥, 𝑡𝑥 + 𝑡𝑤]  ×  [𝑡𝑦 , 𝑡𝑦 + 𝑡ℎ] (2) 

 
Any stored rectangle colliding with T must intersect Q. 

 

B. Quadtree Retrieval 

Start at the root node 𝑣. If the node’s bounding box 𝐵(𝑣) does 

not overlap 𝑄, skip that entire subtree because no collisions are 

possible there. 

Otherwise, collect all rectangles stored in 𝑣, then recurse only 

to child nodes 𝑐 whose boxes satisfy 

 

𝐵(𝑐)  ∩  𝑄  ≠  ∅ (3) 

 

By doing this, empty regions get quickly pruned. 

 

Let Sq be the multiset of all rectangles gathered in this way. It 

guarantees 

 
{𝑅𝑖 ∶ 𝑅𝑖  ∩  𝑇 ≠  ∅}  ⊆ 𝑆𝑞 (4) 

 

In other words, every true collision candidate lies in Sq. 

 

C. Exact AABB Overlap Test 

 

For each candidate rectangle 𝑅 = [𝑥, 𝑦, 𝑤, ℎ]  ∈ 𝑆𝑞, perform 

the axis-aligned bounding-box test: 

 

¬(𝑥 >  𝑡𝑥 + 𝑡𝑤  ∨  𝑥 +  𝑤 <  𝑡𝑥  ∨  𝑦 

>  𝑡𝑦 +  𝑡ℎ  ∨   𝑦 +  ℎ <  𝑡𝑦)      (5) 

 

If this holds, R truly overlaps T. (i.e. collision) 
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D. Complexity Analysis 

 

Let N be the total number of stored rectangles and ℎ ≈  𝑙𝑜𝑔 𝑁 

the quadtree height. After retrieval, we have |𝑆𝑞| = 𝑘 

candidates.  

For the retrieval cost, we visit  𝑂(ℎ) nodes (pruning subtrees 

whose boxes miss Q) and collect their objects. For the filter 

cost, we perform 𝑘 simple AABB tests. In total 

 
𝑂(ℎ + 𝑘) = 𝑂(log 𝑁 + 𝑘) (6) 

 

which for modest 𝑘 is far faster than the O(N) brute-force 

alternative. 

 

V.  PROXIMITY SEARCH 

A. Query Square 

 

Mathematically, the problem of proximity search can be 

defined as to be described. Given a set of points 

 

𝑃 = { 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁  (7) 

 

within the plane and a query point 

 

𝑞 = (𝑞𝑥 , 𝑞𝑦) (8) 

 

we want to find all points within a radius R, as follows: 

 

𝑁(𝑞, 𝑅) =  {𝑝𝑖 ∈ 𝑃 ∶  |(𝑝𝑖 −  𝑞)|  ≤ 𝑅} (9) 

 

Computationally, we form the axis-aligned bounding square 

around the query circle. 

 

𝑄 =  [𝑞𝑥 −  𝑅, 𝑞𝑥 +  𝑅]  ×  [𝑞𝑦 −  𝑅, 𝑞𝑦 +  𝑅] (10) 

 

Which forms: 

 

𝑁(𝑞, 𝑅)  ⊆  { 𝑝𝑖 ∶  𝑝𝑖 ∈ 𝑄} (11) 

 

B. Quadtree Retrieval 

Starting at the root node v, we do: 

• If the node’s bounding box B(v) does not overlap Q, 

stop (no points in this subtree can lie in Q). 

• Otherwise, add this node’s stored points to our 

candidate list, then recurse only into those child 

quadrants whose boxes intersect Q. 

 

Mathematically, if v has children c, we visit just those c with 

 

𝐵(𝑐) ∩ 𝑄 ≠  ∅  

 

After this step, we have a candidate set 

 
𝑆𝑄 = { 𝑝 ∈ 𝑃 ∶  𝑝 was collected from any visited node} (12) 

 

Which satisfies 

 
𝑃 ∩ 𝑄 ⊆  𝑆𝑄  (13) 

 

C. Pruning False-Positives 

 

We then prune out false positives by checking each candidate 

against the true circle. 

 

(𝑝𝑥 − 𝑞𝑥)2 + (𝑝𝑦 − 𝑞𝑦)
2

 ≤  𝑅2 

 

Points that pass this are exactly the true neighbours within 

radius R. 

 

D. Complexity Analysis 

 

Let the tree height be  

 

ℎ ≈ log 𝑁 

 

and let  

 

𝑘 =  | 𝑆𝑞 | 

 

be the number of candidates returned. Then, the quadtree 

retrieval touches O(h) nodes (pruning entire subtrees when 

possible) and inspects k points in the last stage. So, the total 

work required is roughly 

 

𝑂(ℎ +  𝑘)  =  𝑂(𝑙𝑜𝑔 𝑁 +  𝑘) 

 

which for moderate k is far less than the O(N) of checking 

every point. 

 

 

VI. IMPLEMENTATION 

 
Figure 6.1. Quadtree class 

 

Generally, the base quadtree implementation for collision 

detection and proximity search is the same, with the main 

difference at getting the index of a point or a rectangle. quadtree 

class is created with bounds, level, maximum objects, and 

maximum levels as its parameter.  
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Regarding the insertion of a new object to the quadtree, when 

there are no child nodes, everything is stored in self.objects. 

Once len(self.objects) exceeds max_objects (the variable 

initialized in the constructor) and the depth allows, it calls split() 

to create four children.  

After splitting, it re-evaluates each stored object: if it now 

fits wholly in one child (via get_index), move it down. Else (it 

straddle multiple children), it remain in the parent’s self.objects. 

This ensures that each leaf holds only a small number of objects 

that can’t fit neatly into its descendants. 

In the retrieve() function, range_rect is either a test-collider’s 

bounding box or the search-radius square. If 

get_index(range_rect) returns a child index (i.e. the query fits 

entirely in one quadrant), recurse into that child. Always add 

self.objects, because they include any items that straddle 

boundaries and might collide or lie within the search area. 

 

A. Collision Detection 

 

 
Figure 6.2. Get index function of collision detection 

 

For collision detection, the get_index() function, ‘top’ tests 

whether the rectangle’s bottom edge (y + height) is no lower 

than the horizontal midline, ‘bottom’ tests whether its top edge 

(y) is no higher than that same midline, ‘left’ tests whether 

rectangle’s right edge (x + width) is entirely to the left of the 

vertical midline, and ‘right’ tests whether its left edge (x) is 

entirely to the right of that midline. 

In short, the function returns a quadrant index only if the 

entire rectangle fits fully inside that child. Otherwise, it returns 

-1, so that overlapping or straddling rectangles stay in the parent 

 

 
Figure 6.3. Generation of N random rectangles and 

construction of the quadtree 

 

For the purpose of this implementation, various number of 

random rectangles of various size and positions are created. 

 

 

 
Figure 6.4. Rectangle visualization 

 

The Matplotlib library is used to visualize all the rectangles that 

have been created. 

 

 
Figure 6.5. The collision test for brute force and quadtree 

 

The tests are done in two methods: brute force and quadtree-

accelerated.   

In the brute force testing, for each test rectangle, it scans every 

stored rectangle and uses four comparisons to detect axis-

aligned overlap. It performs O(N) comparisons, where N is the 

total number of rectangles. 

In the quadtree-accelerated testing, it only retrieves those 

rectangles whose quadtree nodes overlap test rectangle. It then 

runs the same four-comparison AABB check on that (much 

smaller) candidate set. The cost per test is O(log N + k), where 

k is the number of candidates returned. 
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Figure 6.6. Collision detection test benchmark 

 

The benchmarking process is done by building a list of REPS or 

test rectangles, randomly positioned rectangles each sized 

between MIN_SIZE and MAX_SIZE. Timing is done by 

recording a high-resolution start time ‘t0’, calling the provided 

test function fn(test) once per random rectangle, and recording 

end time with t1. Result is then returned as the total elapsed time 

in milliseconds. 

 

B. Proximity Search 

 
Figure 6.7. Get index function for proximity search 

 

For proximity search, the left and right tests by comparing the 

point’s x to mid_x. The top and bottom tests by comparing the 

point’s y to mid_y. If the point sits strictly in one of the four 

quadrants, it will return that index. Otherwise (if it lies exactly 

on a midline), it returns -1 so that it stays in the parent. 

 

 
Figure 6.8. Points generation 

 

Generally, the implementation of the proximity search is similar 

to that of collision detection. Various number of random points 

of various positions are created. 

 

 
 

 
Figure 6.9. Visualization of the points  

 

 
Figure 6.9. Brute force and quadtree proximity search 

 

In the brute force searching, the algorithm checks every point in 

points to see if it lies within the circle of radius R. The cost per 

query is O(N) distance computations, where N is the total 

number of points. 

 

Whereas in the quadtree neighbour search, the pruning step first 

build the axis-aligned square and call qt.retrieve(Q, []), which 

returns only the points in quadrants overlapping Q. It runs the 

same circle test as brute force searching, but now only on the 

much smaller candidate set. The cost per query is roughly O(log 

N + k), where k is the number of candidates returned. 
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Figure 6.10. Proximity search test benchmark 

 

The benchmark randomly creates two thousands points of 

varying positions and time how long it takes to call fn(q) for 

each query, using time.perf_counter() for high-resolutionn 

timing. It then converts elapsed seconds to milliseconds. 

 

VII. TEST RESULTS AND COMPARISON 

A. Collision Detection 

 

No. N 

(rectangles) 

Brute Force 

(ms) 

Quadtree (ms) 

1 500 63 17 

2 1000 121 28 

3 1500 202 43 

4 2000 251 52 

5 4000 497 103 

6 8000 1010 218 

7 16000 1983 551 

Average 590 145 

Table 7.1. Collision detection tests and comparison 

 

Tests are done for the collision detection implementation with 

various number of rectangles for input. For N > 500 rectangles, 

the time elapsed for quadtree starts out lower but both increases 

linearly with increasing number of rectangles. 

 

B. Proximity Search 

 

No. N (points) Brute Force 

(ms) 

Quadtree (ms) 

1 500 107 6 

2 1000 202 6 

3 1500 327 7 

4 2000 418 7 

5 4000 831 8 

6 8000 1719 10 

7 16000 3362 11 

Average 995 8 

Table 7.2. Proximity search tests and comparison 

 

In the proximity search case, time elapsed for the quadtree grows 

far slower. For N > 500 rectangles, the increase of elapsed time 

for the quadtree case is minimal even for exponential increase 

of input. Whereas for the brute force case, time increases 

linearly with the number of inputs. 

 

C. Discussion 

 

As expected, the time taken for the quadtree method is lower 

than brute force. For proximity search, the quadtree method has 

far lower time increase, even when increasing the number of 

points exponentially. Whereas for the collision detection case, 

the time taken using the quadtree method is still lower, but for 

N > 500 when N is increased, the time taken increases linearly. 

This happens because the shape and size of the query makes all 

the difference.  

For fixed-radius (proximity) queries, query region is always a 

2R × 2R square (then a little circle test is created inside). As N 

is grown, the area of the square stays the same, so on average it 

touches roughly the same constant number of leaf cells and 

returns a small 𝑘 independent of N. 

The complexity per query is  

 

𝑂(log 𝑁 + 𝑘) = 𝑂(log 𝑁 + 𝑐𝑜𝑛𝑠𝑡) 

 

As N is doubled, the algorithm only pay log N extra steps, which 

is why the quadtree times hover around 6-10 ms, even as N goes 

from 500 to 16000. 

 

This is different with rectangle collision queries. Each test 

rectangle has a random width/height up to the maximum (10—

50 px). Its query region is exactly itself. Because the rectangles 

are not tiny points, many straddle the mid-lines or are large 

enough to overlap multiple child nodes. They end up stored in 

parent nodes instead of deep leaves. 

 

On retrieval, the quadtree must traverse more branches (maybe 

the whole tree) and returns a much larger candidate set 𝑘. In 

the worst case, 𝑘 can grow in proportion to N, so the pruned 

scan becomes almost as expensive as brute-force. 

 

The time complexity is 

𝑂(log 𝑁 + 𝑘(𝑁)), 

But k(N) grows with N, so the overall time gets closer to O(N). 

 

Some of the solutions for better collision performance are 

tuning the maximum objects and maximum levels in the 

quadtree, using “loose” quadtrees which slightly expand child 

bounds to let objects get deeper, and switching to a grid or 

sweep-and-prune broad-phase. 

 

VII. CONCLUSIONS 

Collision detection and proximity search are some of the 

common problems encountered on the domain of AR and 

videogames. The tests done by creating a simple implementation 

of solving collision detection and proximity search by brute 

force and quad-tree accelerated method proves that spatial 

partitioning (in this case, quadtree-based) can accelerate the 

queries. 

Quadtree excel when query regions are small relative to the 

entire domain and when objects are well-distributed so that most 

objects settle into deep leaves. 

When queries or stored objects are large and cross many cell 

boundaries, pruning suffers and the candidate count 𝑘 can 

approach N, reducing the quadtree’s advantage. 

In video games and AR/VR, proximity search queries often 

involved or smal radii, which is suitable for quadtree 

acceleration. But, for complex collision detection between many 
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variable-sized bounding boxes, it may require additional 

structure or hybrid methods to maintain real-time performance. 

Quadtrees remain a simple and effective tool for spatial queries 

and, with the right tuning, can be a choice to meet the real-time 

demands of graphics or simulation. 

 

VIII. APPENDIX 

Video Link: https://youtu.be/YttwWJyYUP0 
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